50 research outputs found

    The EPOCH Project: I. Periodic variable stars in the EROS-2 LMC database

    Full text link
    The EPOCH (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable stars in the EROS-2 LMC database. To classify these variables, we first built a training set by compiling known variables in the Large Magellanic Cloud area from the OGLE and MACHO surveys. We crossmatched these variables with the EROS-2 sources and extracted 22 variability features from 28 392 light curves of the corresponding EROS-2 sources. We then used the random forest method to classify the EROS-2 sources in the training set. We designed the model to separate not only ÎŽ\delta Scuti stars, RR Lyraes, Cepheids, eclipsing binaries, and long-period variables, the superclasses, but also their subclasses, such as RRab, RRc, RRd, and RRe for RR Lyraes, and similarly for the other variable types. The model trained using only the superclasses shows 99% recall and precision, while the model trained on all subclasses shows 87% recall and precision. We applied the trained model to the entire EROS-2 LMC database, which contains about 29 million sources, and found 117 234 periodic variable candidates. Out of these 117 234 periodic variables, 55 285 have not been discovered by either OGLE or MACHO variability studies. This set comprises 1 906 ÎŽ\delta Scuti stars, 6 607 RR Lyraes, 638 Cepheids, 178 Type II Cepheids, 34 562 eclipsing binaries, and 11 394 long-period variables. A catalog of these EROS-2 LMC periodic variable stars will be available online at http://stardb.yonsei.ac.kr and at the CDS website (http://vizier.u-strasbg.fr/viz-bin/VizieR).Comment: 18 pages, 20 figures, suggseted language-editing by the A&A editorial office is applie

    Keck Observations Confirm a Super-Jupiter Planet Orbiting M Dwarf OGLE-2005-BLG-071L

    Get PDF
    We present adaptive optics imaging from the NIRC2 instrument on the Keck II telescope that resolves the exoplanet host (and lens) star as it separates from the brighter source star. These observations yield the K-band brightness of the lens and planetary host star, as well as the lens-source relative proper motion, ”_(rel,H), in the heliocentric reference frame. The ”_(rel,H) measurement allows for the determination of the microlensing parallax vector, π_E, which had only a single component determined by the microlensing light curve. The combined measurements of ”_(rel,H) and K L provide the masses of the host star, M_(host) = 0.426 ± 0.037 M⊙, and planet, m_p = 3.27 ± 0.32M_(Jupiter) with a projected separation of 3.4 ± 0.5 au. This confirms the tentative conclusion of a previous paper that this super-Jupiter mass planet, OGLE-2005-BLG-071Lb, orbits an M dwarf. Such planets are predicted to be rare by the core accretion theory and have been difficult to find with other methods, but there are two such planets with firm mass measurements from microlensing, and an additional 11 planetary microlens events with host mass estimates <0. 0.5M⊙ and planet mass estimates >2 Jupiter masses that could be confirmed by high angular follow-up observations. We also point out that OGLE-2005-BLG-071L has separated far enough from its host star that it should be possible to measure the host-star metallicity with spectra from a high angular resolution telescope such as Keck, the Very Large Telescope, the Hubble Space Telescope, or the James Webb Space Telescope

    Adaptive Optics Imaging Breaks the Central Caustic Cusp Approach Degeneracy in High Magnification Microlensing Events

    Full text link
    We report new results for the gravitational microlensing target OGLE-2011-BLG-0950 from adaptive optics (AO) images using the Keck observatory. The original analysis by Choi et al. 2012 reports degenerate solutions between planetary and stellar binary lens systems. This is due to a degeneracy in high magnification events where the shape of the light curve peak can be explained by a source approach to two different cusp geometries with different source radius crossing times. This particular case is the most important type of degeneracy for exoplanet demographics, because the distinction between a planetary mass or stellar binary companion has direct consequences for microlensing exoplanet statistics. The 8 and 10-year baselines between the event and the Keck observations allow us to directly measure a relative proper motion of 4.20±0.21 4.20\pm 0.21\,mas/yr, which confirms the detection of the lens star system and directly rules out the planetary companion models that predict a ∌4×{\sim}4 \times smaller relative proper motion. The combination of the lens brightness and close stellar binary light curve parameters yield primary and secondary star masses of MA=1.12−0.04+0.06M⊙M_{A} = 1.12^{+0.06}_{-0.04}M_\odot and MB=0.47−0.03+0.04M⊙M_{B} = 0.47^{+0.04}_{-0.03}M_\odot at a distance of DL=6.70−0.30+0.55 D_L = 6.70^{+0.55}_{-0.30}\,kpc, and a primary-secondary projected separation of 0.39−0.04+0.05 0.39^{+0.05}_{-0.04}\,AU. Since this degeneracy is likely to be common, the high resolution imaging method described here will be used to disentangle the central caustic cusp approach degeneracy for events observed by the \textit{Roman} exoplanet microlensing survey using the \textit{Roman} images taken near the beginning or end of the survey.Comment: Revised version, 19 pages, 8 figures. AJ, 164, 21

    The VMC ESO Public Survey

    Get PDF
    The VISTA near-infrared YJKs survey of the Magellanic Clouds system (VMC) has entered its core phase: about 50% of the observations across the Large and Small Magellanic Clouds (LMC, SMC), the Magellanic Bridge and Stream have already been secured and the data are processed and analysed regularly. The initial analyses, concentrated on the first two completed tiles in the LMC (including 30 Doradus and the South Ecliptic Pole), show the superior quality of the data. The photometric depth of the VMC survey allows the derivation of the star formation history (SFH) with unprecedented quality compared to previous wide-area surveys, while reddening maps of high angular resolution are constructed using red clump stars. The multi-epoch Ks-band data reveal tight period-luminosity relations for variable stars and permit the measurement of accurate proper motions of the stellar populations. The VMC survey continues to acquire data that will address many issues in the field of star and galaxy evolution

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    A survey for variable young stars with small telescopes: VIII — Properties of 1687 Gaia selected members in 21 nearby clusters

    Get PDF
    The Hunting Outbursting Young Stars (HOYS) project performs long-term, optical, multi- filter, high cadence monitoring of 25 nearby young clusters and star forming regions. Utilising Gaia DR3 data we have identified about 17000 potential young stellar members in 45 coherent astrometric groups in these fields. Twenty one of them are clear young groups or clusters of stars within one kiloparsec and they contain 9143 Gaia selected potential members. The cluster distances, proper motions and membership numbers are determined. We analyse long term ( 7 yr) V, R, and I-band light curves from HOYS for 1687 of the potential cluster members. One quarter of the stars are variable in all three optical filters, and two thirds of these have light curves that are symmetric around the mean. Light curves affected by obscuration from circumstellar materials are more common than those affected by accretion bursts, by a factor of 2 – 4. The variability fraction in the clusters ranges from 10 to almost 100 percent, and correlates positively with the fraction of stars with detectable inner disks, indicating that a lot of variability is driven by the disk. About one in six variables shows detectable periodicity, mostly caused by magnetic spots. Two thirds of the periodic variables with disk excess emission are slow rotators, and amongst the stars without disk excess two thirds are fast rotators – in agreement with rotation being slowed down by the presence of a disk

    Statistics for astrophysics: Bayesian methodology

    No full text
    corecore